
Reinforcement Learning for 2048

Michael Baluja

March 15, 2021

Abstract

Reinforcement learning (RL) is utilized in many ap-
plications in order to solve problems not easily under-
taken by supervised or unsupervised machine learn-
ing methods. We utilize reinforcement learning with
neural network-based nonlinear function approxima-
tion in this paper to play the game 2048 using various
reinforcement learning algorithms, and discuss the re-
sults after training models and algorithms. We report
both the merits and deficits present in the use of the
methods implemented.

1 Introduction

Reinforcement learning is utilized in many applica-
tions in order to solve problems not easily under-
taken by supervised or unsupervised machine learn-
ing methods. While supervised machine learning is
focused on classification and regression tasks, and un-
supervised learning focuses on uncovering structure,
reinforcement learning focuses on how to act in envi-
ronments in order to maximize a scalar reward value.
Due to this versatility, reinforcement learning has
been used in many instances to learn to play board
games and video games. In particular, the use of re-
inforcement learning has been used in gameplay in
feats such as AlphaGo defeating human professional
players [2]. In a similar, but less impressive scope, we
look to utilize reinforcement learing in this paper to
learn how to play the game 2048.

In the game 2048, the game board is a 4x4 grid with
tiles that each contain a number 2k, k ≥ 1. Players
choose directions to shift the numbers on the board.
If two like-numbered tiles are shifted into each other,
then the tiles combine to produce a new tile of their
sum. If a valid move is made, that is, if any tiles shift
position or combine due to a player action, then a new
tile containing either a 2 or a 4 is added randomly to
an open position on the game board.

For this game, the end goal is to create the largest
possible numbered-tile before the game board is filled
with pieces that are unable to be moved or combined.

In this sense, the player’s reward is directly propor-
tional to the size of the tiles that have been created;
creating a tile of sum z rewards the player with z
points.

Playing the game consists of moving left, right,
up, and down, which respectively shifts all tiles in
those directions. We look to understand if our re-
inforcement learning implementation can manipulate
these actions in our simulated environment to achieve
human-level agent performance.

2 Related Literature

The most prominent literature in relation to our work
was completed by Dedieu et al., of MIT [1]. While the
authors of this paper were unable to reach a tile sum
of 2048, they did reach tile sums of 1024 on multiple
occasions. Although this is a vital step towards ”solv-
ing” the game, we choose different implementation
in hopes to reach a different, and potentially better,
outcome. In this regard, the authors of this origi-
nal paper utilize Deep Reinforcement Learning with
Monte Carlo Tree Search in order to create value esti-
mates. In contrast, we utilize both Temporal Differ-
ence and Monte Carlo Control methods with neural
network function approximation. This method helps
to show how the generalization of function approxi-
mation is vital for large state-space problems such as
this. Additionally, this method allows us to utilize
both bootstrapping and sample-trajectory learning.

3 Methodology

In this paper, we utilize function approximation con-
trol methods in order to approximate solutions and
values to our problem. As we don’t know the true
value function to help approximate our estimates, we
utilize two different methods to create approxima-
tions of the true value function. Namely, we imple-
ment function approximation with Gradient Monte
Carlo and Semi-Gradient SARSA(0), both utilizing a
custom artificial neural network as their value func-
tion, as recommended.

1



3.1 RL Methods

3.1.1 Gradient Monte Carlo (MC)

Monte Carlo Control is an attractive algorithm for
the problem we face due to the ability to form updates
based on actual trajectories, and focus on states that
are actually reached in the game. However, the down-
fall of the tabular method lies in the size of the state
space for our problem. For a 4x4 gameboard with
tiles that can have a number in {0, 2k, k ≥ 1}, sim-
ply allowing our game to only be played until 2048
will command a state-space of roughly 1116 states,
and our implementation allows higher numbers as
well, further ballooning the state-space. For our im-
plementation, the state space contains roughly 1616

states, which would not allow us to even attempt uti-
lizing tabular reinforcement learning without some
form of adaptation. For this reason, we utilize Monte
Carlo Control with function approximation in order
to find solutions without worrying about the size of
the state-space. To do this, we implement the Gra-
dient Monte Carlo Algorithm presented on page 202
of the course textbook, and added an ε-greedy pol-
icy that selects actions based on our function-based
action-value function [4]. While this modification is
not true Monte Carlo Control, the change is made in
order to avoid potential errors from creating a policy
network.

3.1.2 Semi-Gradient SARSA(0) (SARSA)

With similar reasoning to the aforenoted strengths
of Gradient Monte Carlo, we also implement
Semi-Gradient SARSA. This approach differs in
that we allow bootstrapping, and thus must use a
semi-gradient approach when updating our network
weights. This method is attractive for convergence
reasons, as it does not require playing out the entire
trajectory before updating the network. We use
a similar action selection approach as mentioned
earlier in order to implement this algorithm. We
further modify this approach by integrating a replay
buffer with a batch size of 128, which allows us to
better train our network. This works by passing
in a random sample of experiences to update the
network on, instead of continually passing in highly
correlated experiences [3]. Due to this modifica-
tion, our network should theoretically perform better.

In addition to the modified ε-greedy action selec-
tion based on our action-value function, we slightly
modify the pseudo-code given in the text by making
use of built-in gradient descent and loss calculations.
However, we note that these modifications should not

0 0 0 0
0 0 0 0
0 0 0 0
2 2 0 0

Table 1: Starting State

0 0 0 0
0 2 0 0
0 0 0 2
128 128 8 4

Table 2: Learning State

change the underlying mechanics of our algorithms.

3.2 Setup Specifications

3.2.1 Environment and States

The environment for our 2048 implementation con-
sists of a 4x4 grid of numbered tiles. To start each
episode, we return the state seen in Table 1. Al-
though our function approximation approach allows
us to solve larger state-space problems with fewer
worries, we still choose this static starting state in
order to aid convergence. Upon successful actions, a
new tile numbered either 2 or 4 occurs equiprobably
at any 0-numbered tile location on the gameboard.
The returned state consists of the modified 4x4 grid.
If an unsuccessful action is taken, the environment
ignores this, and the player makes another action.
This was done to ensure that our player does not
get trapped in some part of the state space until a
nongreedy action is selected. Due to this, the agent
will visit a state after every successful action (which
will tend towards being every action after enough
episodes).

3.2.2 Actions

The agent/player is capable of moving up, down, left,
and right. These actions respectively move and com-
bine all applicable tiles in that direction. If a valid
action is taken, a new tile appears as described above.
We utilize an ε-greedy action selection based on our
value function, with varying time-based decaying ε to
allow exploration at first, but still ensure a high level
of exploitation in the long run.

3.2.3 Rewards

Rewards are given based on the sum of combined
tiles, as is done in the original game. For example,

2



combining a 2 and 2 as well as a 4 and 4 will re-
turn a reward of 12, (2 + 2 + 4 + 4). If no tiles
are combined, no reward is given. In this sense, our
agent receives a reward after every action, but will
not necessarily receive a non-zero reward after every
action.

3.3 Neural Network

We implement a simple feed-forward network to act
as our value function. The network, ValueNet, has
two hidden layers, which will allow some level of inter-
action between the tile locations on our gameboard,
while only requiring a small number of weights to
adjust. The input size of our network is 1024 (16
tiles * 16 one-hot powers of two * 4 actions), with
the output being a single value. Further, we utilize
the L1 loss function to imitate the standard update
rule we have learned throughout the course, and uti-
lize PyTorch’s SGD Optimizer to handle our gradient
descent calculations, with momentum of 0.2.

4 Results

We run both our MC and SARSA algorithms over
1000 training cycles and 500 cycles, respectively.
While this difference in training length hinders us
from directly comparing the results, the effect from
our replay buffer on SARSA will allow the network
to train faster, as it updates on more samples com-
paratively. Due to this, some level of comparison
is fair. Both algorithms are ran with α = 0.0001,
ε0 = 0.8 (with a 0.9 decay, 0.01 minimum threshold),
and momentum of 0.2. The maximum tile number
is recorded after every episode, and the value of our
learning state (as shown in Table 2) is recorded af-
ter every ten iterations to show the rate at which our
network is learning. The results of both of these are
seen respectively in Tables 1, 2 and 3, 4.

Analyzing the results of Tables 1 and 2, we note
that our Monte Carlo implementation appears to
be outperforming the SARSA implementation with
higher frequency of 256 pieces, though the higher
rewards do not come until after the 500th episode.
Due to this, we are unable to draw any conclusions
on the different rate at which these algorithms learn.
While computational runtime issues prevented longer
SARSA trials, we believe that additional runtime
would allow us to better see the learning capabilities
of the SARSA implementation.

We first note for Tables 3 and 4 that the episode is
taken mod 10. Analyzing the results of Tables 3 and
4, we see that there does appear to be a difference in
our algorithms in terms of learning capacity. While

Figure 1

Figure 2

the SARSA algorithm utilizes a replay buffer to train
from multiple uncorrelated states at once, the Monte
Carlo algorithm trains an entire episode of states. Al-
though these states are correlated, the non-singular
batch length allows us to better converge to values.
In this regard, it appears that the correlated nature
of the states actually tends to aid learning.

5 Discussion

5.1 Implementation Ideas

For this project, we note multiple different techniques
used to attempt to create working algorithms. First
in this respect is the rate parameters, namely the α
(alpha), ε, (epsilon) and decay, and γ (gamma) pa-
rameters used for updating our value estimates (used
as the neural network learning rate), deciding on ac-
tions to take, and discounting rewards, respectively.
We initially utilize different α values between 0.0001
to 0.8, but did not find any benefit from values over

3



Figure 3

Figure 4

0.2. While a larger α value may have been beneficial
for converging with low-frequency state action pairs,
we ultimately decided to utilize a smaller α value in
order to avoid jumping around too much when per-
forming gradient descent, as the returned states are
not deterministic. We similarly utilize a handful of
ε values and decided on a decaying epsilon value to
encourage exploration at first when the network is
not as useful, but to slowly encourage exploitation
more when the network has been trained. We addi-
tionally decided to keep γ constant at a value of 1,
as the setup of the game appears to perform well for
undiscounted learning. Small changes in momentum
were also made, but we heuristically decide on a small
momentum value of 0.2.

Additionally, we have tried training with adjusted
reward signals. In addition to our tile sum-based re-
ward, we implemented and tested negative rewards
for each invalid move, with both constant rewards of
-1 as well as variable rewards based on the size of
greatest tile number. Both of these methods were
abandoned in favor of removing the ability to count
invalid moves.

5.2 Merits

In terms of strengths, we highlight the environment
utilized for this project, and note that it has per-
formed incredibly well and without error for all noted
states and actions. While it can be difficult to
reverse-engineer a game, this project does so properly,
and additionally makes note of the relevant states, ac-
tions, rewards, and other gameplay variables. Over-
all, this project has been a great learning opportunity,
and a great opportunity to showcase the knowledge
of reinforcement learning that has been accumulated
throughout this course.

For the algorithms, a major strength is the ability
for our Monte Carlo implementation to learn to some
degree. Additionally, we believe that the SARSA-
based implementation for this game has a strong
foundation for being able to learn to play 2048 fur-
ther, but we simply did not have enough time to train
the networks in depth and properly tune the network
hyperparameters for the task at hand.

5.3 Deficiencies

First and foremost, the overshadowing deficiency at
hand is with regard to the efficacy of the implemen-
tations used in this paper; the algorithms utilized
did not successfully solve the task we sought out
to solve. As multiple different algorithms (Gradient
Monte Carlo/Monte Carlo Control, Semi-Gradient

4



TD(0), Semi-Gradient SARSA with and without Re-
play Buffer) were tested, we believe that the issue in
this paper is with regard to the neural network im-
plemented for the non-linear value function approx-
imation. While the network architecture and imple-
mentation is relatively standard, we believe that this
issue is caused by the computational expense required
to properly train our model with proper parameters.
For instance, we recognize that a small ε value is ben-
eficial, but lowering the value also increases training
time, as we now have to run more examples through
our network to get the best action from it. In this re-
gard, additional computation time would likely serve
this project well.

6 Contributions

All implementation code has been independently
written, with small bits loosely based on online guides
(such as the neural network code) [4], [5].

7 Additional Information

Project code repository is available here:
https://github.com/michaelbaluja/rl-2048

Project video review is available here:
https://youtu.be/mGs0tmc8yNE

References

[1] A. Dedieu, ”Deep Reinforcement
Learning for 2048”, MIT. Available:
http://www.mit.edu/people/adedieu/pdf/2048.pdf
[Accessed 8 March 2021].

[2] D. Silver et al., ”Mastering the game of Go with
deep neural networks and tree search”, Nature,
vol. 529, no. 7587, pp. 484-489, 2016. Available:
10.1038/nature16961 [Accessed 8 March 2021].

[3] ”Reinforcement Learning (DQN) Tuto-
rial”, PyTorch, 2020. [Online]. Available:
https://pytorch.org/tutorials/intermediate/reinforcement q learning.html

[4] R. S. Sutton and A. Barto, Reinforcement learn-
ing: an introduction. Cambridge, MA: The MIT
Press, 2018.

[5] ”yunjey/pytorch-tutorial”,
GitHub, 2021. [Online]. Available:
https://github.com/yunjey/pytorch-
tutorial/blob/master/tutorials/01-
basics/feedforward neural network/main.py.
[Accessed: 15- Mar- 2021].

5

https://github.com/michaelbaluja/rl-2048
https://youtu.be/mGs0tmc8yNE

	Introduction
	Related Literature
	Methodology
	RL Methods
	Gradient Monte Carlo (MC)
	Semi-Gradient SARSA(0) (SARSA)

	Setup Specifications
	Environment and States
	Actions
	Rewards

	Neural Network

	Results
	Discussion
	Implementation Ideas
	Merits
	Deficiencies

	Contributions
	Additional Information

