
Supervised Learning Comparison

For Binary Text Classification

Michael Baluja

March 25, 2021

Abstract

There are many popular classification algorithms in
use, all with varying strengths. It can be difficult at
times to understand which algorithm will lead to op-
timal performance for a given task and data set. We
present an analysis of different algorithms used for
text classification, namely Support Vector Machines,
Logistic Regression, Random Forests, and Artificial
Neural Networks. We also compare the algorithms
presented across multiple performance metrics in or-
der to understand the trade-off of using off-the-shelf
models versus building a neural network.

1 Introduction

While there are many promising state-of-the-art neu-
ral networks capable of performing tasks such as text
classification with nearly 95% accuracy on standard
data sets, implementing and training these networks
may often be computationally prohibitive [5]. This
paper looks to understand the comparative effective-
ness of different off-the-shelf1 machine learning clas-
sification models against more complex neural net-
works, all trained on various text classification tasks.
Through this research, we look to see the relative per-
formance to help better understand whether or not it
is necessary to implement and train neural networks
for certain use cases.

There are myriad different classification tasks that
fall under the category of text classification, and
many different reasons to analyze the information
present in these data. In this paper, we analyze
model performance in terms of accuracy for three dis-
tinct tasks: binary sentiment analysis, binary click-
bait classification and binary subjectivity/objectivity
classification. All of the listed tasks are binary text
classification tasks with a roughly even class distribu-
tion across small (10,000 - 32,000 sample) data sets.

1For this paper, we consider our off-the-shelf algorithms as
the Support Vector Machine, Logistic Regression, and Random
Forest, all implemented through the scikit-learn package.

2 Methodology

This report covers performance across three different
data sets, four different classification algorithms, and
four different error metrics, as listed. All parameter
spaces are similar to what is done by Caruana et al.,
with the exception being the Random Forest [4].

2.1 Classification Algorithms

Support Vector Machines (SVM)

We train across linear, polynomial, and radial basis
kernels. Our polynomials include degree two and de-
gree three. Our radial basis kernel uses gamma values
of 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 2. Our C regu-
larization ranges in multiples of 10 from 1e-7 to 1e3.

Logistic Regression (LogReg)

We train both unregularized and L2 regularized mod-
els. Our C regularization ranges in multiples of 10
from 1e-8 to 1e4.

Random Forest (RF)

We train a forest of 256, 512, 1024, 2048, 4096, and
8192 trees. The size of the feature set considered at
each split is 1.2

2.1.1 Neural Networks (NN)

We train a Character-level Convolutional Neural Net-
work with default hyper-parameter settings for com-
putational purposes. This model utilizes stochastic
gradient descent with a learning rate of 0.01, gamma
and momentum of 0.9, and a batch size of 1024 sam-
ples over 100 training epochs. Further implementa-
tion information can be found at [2], [6].

2We stray from the parameter space utilized in [4] due to
implementation. As the CountVectorizer utilized for our data
sets only returns a sparse vector as a sigle feature, we choose
to vary the number of trees for search instead of implementing
additional features based on heuristics.

1



2.2 Error Metrics

As this report looks to understand the best algorithm
to implement for given text classification tasks, we
adopt error metrics that are fairly standard in the
natural language processing literature. In this re-
gard, we focus the performance attention on accu-
racy (ACC) and the F1 metric. However, we also
recognize and understand that not all classification
tasks will equally want to balance precision (PREC)
and recall (REC) as is done with the F1 metric. For
this reason, we include precision and recall metrics
for each data set and classifier combination to allow
the reader further analysis.

2.3 Data Sets

The three data sets considered for this task all fall
into the category of binary text classification, al-
though with different tasks, as described below.

Yelp Polarity (Yelp)

Sentiment analysis data set of yelp review polarity
for positive or negative sentiment. While the origi-
nal data set is comprised of 299,000 training/testing
samples, both splits were combined and trimmed to
32,000 samples for computational accessibility. Class
ratios were preserved with the split.

Clickbait (Click)

Data set containing news headlines that are consid-
ered to be or not be ”clickbait”. This set contains
16,000 samples each of clickbait and non clickbait
headlines for a total of 32,000 total samples[1].

Subjectvity Objectivity (SubOb)

Data set containing sentences that are tagged to ei-
ther contain subjective or objective information. The
set contains 5,000 samples each of subjective and ob-
jective samples for a total of 10,000 total samples.

3 Experiment

We utilize a 5-fold cross validation for hyper-
parameter tuning to select the optimal model for
each off-the-shelf algorithm we include. Following
the work of Caruana et al., we perform this valida-
tion over 5000 training and validation samples, with
each cross validation trial including 4000 training and
1000 validation samples [4]. The rest of the data is
set aside for testing the performance of our final op-
timal model. The model with the best performance

on the validation data is presented in Tables 1 - 6.
Implementation details are present in Appendix B.

In terms of data transformation, we utilize a
character-level vectorized data form for our SVM, Lo-
gReg, and RF models to complement the character
level implementation of our NN. While some prefer
to utilize a maximum feature ceiling of 10% of the
feature space, initial testing found performance in-
creases when not imposing such a limit.

For our neural network, we adopt a Character-level
Convolutional Neural Network from Zhang et al, with
unofficial code provided by Mehrani in [2]. We uti-
lize the default hyper-parameter settings and do not
perform any sort of tuning for computational reasons.

Due to the variance from the random sampling that
occurs when selecting training data, we perform each
trial of data splitting, hyper-parameter tuning (with
the exception of the NN), and model evaluation three
times. We aggregate the data from these trials to
report on the listed error metrics, and also use the
variance between these trials to understand the sig-
nificance of performance difference between our dif-
ferent data set and algorithm combinations.

Mean trial performance for each combination of
model and data set is shown in Table 1 for test perfor-
mance and Table 3 for train performance. Mean trial
performance for each model over all data sets is shown
in Table 2 for test performance. Note that the best
performance per metric is in bold, and performance
differences that do not have a statistically significant
difference from the best performance (through a two
sample t-test) at p < 0.05 are marked with a *, with
p-values present in A.2.1 and A.2.2.

Evaluating the mean test performance in Table 1,
we see the best performance and all significant results
come from our neural network. For all other cases,
performance is in the neighbourhood of 50% to 60%,
signifying that the models did poorly on discriminat-
ing on the binary classification tasks, possibly due to
extremely non-seperable data. However, we do see
continually higher performance on the clickbait data
set than on the yelp and subjectivity objectivity data
sets. This poor performance is still present when re-
stricting the feature space as mentioned earlier.

Comparing across metrics in Tables 1 and 2 we see
that in most cases, performance across accuracy, pre-
cision, recall, and F1 are all within a few percent of
each other. It is important to note, however, that low
performance for the precision, recall, and F1 metrics
in some instances is caused by a lack of the classi-
fier predicting any values for either the positive or
negative class, resulting in a score of 0 for those met-
rics for a given training cycle. This occurred in the
neural network for the Yelp data set, as seen in A.1.

2



Table 1: Mean Test Performance by Model and Data Set

Model Data Set ACC PREC REC F1

SVM Yelp .558 .559 .557 .554
SVM Click .654 .659 .654 .651
SVM SubOb .541 .573 .541 .485
LogReg Yelp .556 .561 .555 .545
LogReg Click .654 .658 .654 .653
LogReg SubOb .535 .549 .537 .504
RF Yelp .525 .525 .525 .523
RF Click .655 .659 .656 .652
RF SubOb .527 .537 .529 .500
NN Yelp .514 .347 .542* .415*
NN Click .895 .905 .885* .895
NN SubOb .591 .598 .916 .702

Table 2: Mean Test Performance by Model

Model ACC PREC REC F1

SVM .584* .597* .584* .564*
LogReg .582* .589* .582* .567*
RF .569* .574* .569* .559*
NN .667 .616 .781 .670

This trend of neural networks achieving highest per-
formance is similar in Table 2, with all top perfor-
mance being achieved by neural networks. However,
when averaging over all results we see significant per-
formance by other algorithms. This implies that over-
all, neural networks do not deliver significant perfor-
mance increases when compared to any of our tested
off-the-shelf algorithms.

Table 3 shows mean test performance for each
model and data set combination. When comparing
these results with the results seen in Table 1, we only
see large differences in performance when looking at
the neural network. This indicates that while the
off-the-shelf algorithms are unable to fully solve the
classification problem, the slightly above-chance per-
formance they do have generalizes well.

4 Discussion

4.1 Hyper-parameter Analysis

We see heat maps for validation performance across
different hyper-parameters for each off-the-shelf
model in Appendix A.3. From this, we see an overall
trend of high performance arising from situations in
which the C value is high. In Figure A.3.2 we see an
overall trend of roughly similar performance (note the

accuracy scale), but best performance from Caruana
et al.’s original tree count of 1024 [4]. Figure A.3.4
shows that we get higher performance from higher
polynomial degrees, which gives insight to possibly
training models on higher degree polynomial models.
We also see in A.3.5 that best performance tends to
come from a small radial width with a mid-range to
high C value. We also note the relatively small range
of accuracy that these different parameters achieve.

4.2 Conclusion

To conclude, there are a few points worth acknowl-
edging. Answering the question of whether or not it
is worthwhile to train a neural network instead of an
off-the-shelf algorithm depends on time and compu-
tational speed constraints. While we do see neural
networks outperforming all of the off-the-shelf algo-
rithms, we note that the neural networks took an
average of 15-20 minutes for training a single model,
while grid searches for the LogReg and RF models
would be completed in seconds to minutes. It is also
important to note that while our off-the-shelf algo-
rithms were trained using CPUs, the neural networks
were trained using a CUDA-enabled GPU. In the case
of difficult problems as present in the yelp and sub-
jectivity/objectivity data sets, it may likely be neces-
sary to utilize neural networks when possible in order
to boost performance. While the performance differ-
ences may not be statistically significant, they may
still prove to have real-world significance.

It is important to mention the overall poor per-
formance for all models, with the exception of the
neural network trained on the clickbait data set. Ad-
ditional testing was conducted using the same test
bench with the LETTER data set of the original pa-
per to ensure test bench functionality. Performance

3



Table 3: Mean Train Performance by Model and Data Set

Model Data Set ACC PREC REC F1
SVM Yelp .576 .578 .576 .573
SVM Click .654 .659 .655 .653
SVM SubOb .542 .574 .541 .485
LogReg Yelp .564 .567 .562 .552
LogReg Click .654 .657 .653 .652
LogReg SubOb .539 .552 .537 .507
RF Yelp .627 .628 .626 .625
RF Click .652 .656 .651 .649
RF SubOb .555 .570 .554 .528
NN Yelp .517 .516 .576 .544
NN Click 1 1 .999 1
NN SubOb .665 .664 .610 .635

on this trial reached up to 96.34% accuracy on vali-
dation data, indicating that our poor performance is
due to model choice for the individual data sets as op-
posed to implementation. One possible explanation
for poor performance is the low number of samples
used for training. When using the full yelp data set
without limitation, many models, such as the neural
network used in this work are able to reach upward of
95% accuracy. Additional training cycles were com-
pleting with more samples in the yelp data set, but no
significant improvement in performance was noted.

Another important point pertains to the high sim-
ilarity of the different error metrics when looking at
the performance of the off-the-shelf algorithms. How-
ever, there is more variability in the different metrics
when looking at our neural network results in Tables
1 and 2. One possible explanation for this may have
to due with the balance of our data sets, but fur-
ther work to investigate performance across different
metrics for unbalanced data sets should be done.

We believe it is necessary for future research to uti-
lize ensemble methods for comparison against neural
networks. In addition, heuristic-based feature addi-
tion may prove beneficial for models such as the ran-
dom forest, and should be considered in future work.

References

[1] Chakraborty, A., Paranjape, B., Kakarla, S. and
Ganguly, N., 2016. Stop Click-bait: Detecting
and Preventing Clickbaits in Online News Media.
Proceedings of the 2016 IEEE/ACM International
Conference on Advances in Social Networks Anal-
ysis and Mining,.

[2] ArdalanM, “ArdalanM/nlp-
benchmarks,” GitHub. [Online]. Avail-

able: https://github.com/ArdalanM/nlp-
benchmarks/blob/master/src/cnn/ [Accessed:
04-May-2020].

[3] M. Baluja, “michaelbaluja/classifiercomparison,”
GitHub, Dec-2020. [Online]. Available:
https://github.com/michaelbaluja/classifiercomparison.
[Accessed: 14-Dec-2020].

[4] R. Caruana and A. Niculescu-Mizil, “An Em-
pirical Comparison of Supervised Learning Al-
gorithms,” International Conference on Machine
Learning, vol. 23, 2006.

[5] S. Ruder, “NLP Progress: English Text
Classification,” NLP. [Online]. Avail-
able: http://nlpprogress.com/english/text
classification.html. [Accessed: 03-Dec-2020].

[6] X. Zhang, J. Zhao, and Y. LeCunn, “Character-
level Convolutional Networks for Text Classifica-
tion,” 2015.

4



A Additional Results

A.1 Raw Test Set Scores

We present raw test data performance in A.1.

A.1: Raw Test Performance by Model and Data Set

Model Data Set Metric Values

SVM Yelp ACC [0.567, 0.544, 0.564]
SVM Yelp PREC [0.567, 0.545, 0.566]
SVM Yelp REC [0.567, 0.543, 0.562]
SVM Yelp F1 [0.567, 0.539, 0.556]
LogReg Yelp ACC [0.556, 0.560, 0.551]
LogReg Yelp PREC [0.562, 0.562, 0.559]
LogReg Yelp REC [0.556, 0.559, 0.551]
LogReg Yelp F1 [0.545, 0.555, 0.535]
RF Yelp ACC [0.527, 0.527, 0.520]
RF Yelp PREC [0.527, 0.528, 0.520]
RF Yelp REC [0.527, 0.527, 0.520]
RF Yelp F1 [0.526, 0.524, 0.520]
NN Yelp ACC [0.555, 0.493, 0.493]
NN Yelp PREC [0.548, 0.000, 1.000]
NN Yelp REC [0.625, 0.000, 0.493]
NN Yelp F1 [0.584, 0.000, 0.660]
SVM SubOb ACC [0.543, 0.537, 0.541]
SVM SubOb PREC [0.582, 0.570, 0.567]
SVM SubOb REC [0.544, 0.540, 0.539]
SVM SubOb F1 [0.485, 0.484, 0.488]
LogReg SubOb ACC [0.533, 0.534, 0.537]
LogReg SubOb PREC [0.556, 0.548, 0.545]
LogReg SubOb REC [0.536, 0.535, 0.538]
LogReg SubOb F1 [0.489, 0.503, 0.520]
RF SubOb ACC [0.518, 0.534, 0.528]
RF SubOb PREC [0.534, 0.541, 0.536]
RF SubOb REC [0.523, 0.535, 0.529]
RF SubOb F1 [0.479, 0.517, 0.505]
NN SubOb ACC [0.551, 0.772, 0.501]
NN SubOb PREC [0.501, 0.791, 0.501]
NN SubOb REC [1.000, 0.748, 1.000]
NN SubOb F1 [0.668, 0.769, 0.668]
SVM Clickbait ACC [0.655, 0.654, 0.653]
SVM Clickbait PREC [0.657, 0.660, 0.659]
SVM Clickbait REC [0.655, 0.654, 0.652]
SVM Clickbait F1 [0.654, 0.650, 0.649]
LogReg Clickbait ACC [0.654, 0.655, 0.654]
LogReg Clickbait PREC [0.656, 0.656, 0.660]
LogReg Clickbait REC [0.654, 0.655, 0.654]
LogReg Clickbait F1 [0.653, 0.654, 0.651]
RF Clickbait ACC [0.656, 0.656, 0.653]
RF Clickbait PREC [0.662, 0.657, 0.659]
RF Clickbait REC [0.656, 0.656, 0.653]
RF Clickbait F1 [0.653, 0.655, 0.649]
NN Clickbait ACC [0.875, 0.904, 0.907]
NN Clickbait PREC [0.880, 0.909, 0.925]
NN Clickbait REC [0.870, 0.899, 0.887]
NN Clickbait F1 [0.875, 0.904, 0.906]

5



A.2 Table 1 Comparison p-values

We present p-values for the uncorrected two-sample t-
tests done in Table 1 and 2. These results are present
in A.2.1 and A.2.2, respectively.

A.2.1: p-values for Table 1 Comparisons

Model Data Set ACC PREC REC F1
SVM Yelp 2.171e-6 9.124e-7 0.000 1.834e-5
SVM Click 1.914e-5 4.874e-5 0.036 1.776e-5
SVM SubOb 4.353e-6 1.854e-5 0.011 2.194e-6
LogReg Yelp 2.839e-6 1.559e-6 0.000 1.033e-5
LogReg Click 1.906e-5 4.871e-5 0.036 1.761e-5
LogReg SubOb 3.947e-6 1.292e-5 0.011 8.281e-6
RF Yelp 7.654e-6 6.999e-6 0.000 1.444e-5
RF Click 1.957e-5 4.969e-5 0.036 1.806e-5
RF SubOb 5.127e-6 1.037e-5 0.010 1.240e-5
NN Yelp 0.075 0.135 0.504 0.206
NN Click 1.000 1.000 0.735 1.000
NN SubOb 0.029 0.035 1.000 0.005

A.2.2: p-values for Table 2 Comparisons

Model ACC PREC REC F1
SVM 0.234 0.848 0.086 0.281
LogReg 0.220 0.790 0.084 0.295
RF 0.167 0.679 0.069 0.259
NN 1 1 1 1

A.3 Hyper-parameter Heat Maps

The following graphs show validation set performance
during hyper-parameter selection.

A.3.1

A.3.2

A.3.3

6



A.3.4

A.3.5

7


	Introduction
	Methodology
	Classification Algorithms
	Neural Networks (NN)

	Error Metrics
	Data Sets

	Experiment
	Discussion
	Hyper-parameter Analysis
	Conclusion

	Additional Results
	Raw Test Set Scores
	Table 1 Comparison p-values
	Hyper-parameter Heat Maps


