An Empirical Comparison of Unsupervised and
Supervised Classification for Fake News Detection

N] Baluja

Abstract—A major challenge for media outlets, especially social
media, is the spreading of misinformation. To avoid negati
impacts on society, it is in our best interest to detect false
information on social media platforms. Unfortunately, the amount
of fake news is proliferating, and we need to find new methods
to increase detection accuracy. This paper utilizes unsupervised
and supervised models on real and fake news datasets to compare
classification performance. Here we use K-means clustering and
Support Vector Machines (SVM). We perform an empirical
analysis on the performance of the two models to see which
method yields the highest accuracy.

[. INTRODUCTION

Through dissemination, fake news feeds on sensationalism,
hoaxes, conspiracies, false rumors, and scandals. While this is
not a new phenomenon on the internet, the extent to which
it proliferates through social media increases its negative
impact on society. Harmful intent is often debated: however,
incentives such as monetary, social, and political benefits are
often drivers for spreading fake news [1]. The spread of fake
news is a crucial problem due to its unexpected consequences
and potential for large-scale urmoil triggering [2].

News sites and social media are used by millions of people
every day. In addition, people around the world demonstrate
their feelings and opinions based on these sites every second.
Consequently, information is distributed very quickly, and
its impacts on social networks are critical since it can be
reinforced and affect an incredulous number of people in a
matter of minutes [3]. Therefore, detecting fake news has
become an increasingly popular new research topic in recent
years.

One such medium is Reddit's t/news and r/worldnews sub-
reddits, where four hundred posts and twenty thousand com-
ments are posted on a given day. Reddit has made efforts to
combat fake news through manual moderation and automated
systems. However, manual moderation does not scale well, and
moderators themselves may be susceptible to misinformation
and biases. The automoderator is a useful system customizable
to a given subreddit’s needs but lacks specificity. A classifier
capable of distinguishing between real and fake news would
be invaluable for these and many other social media plat-
forms.

Supervised classifiers are an attractive group of algorithms for
class-based distinction tasks in instances where class labels
are known before taining. However, for tasks such as fake
news detection, this is oftentimes unattainable, as the authors
behind many “fake” news platforms do not wish to advertise

the illegitimacy of their articles. For tasks such as recognizing
fake news “in the wild." it is, therefore, necessary to use some
type of unsupervised algorithm to aid in our classification
efforts. To understand how well the unsupervised classifier
is performing, we utilize labeled training data. However, we
note that this is different from simply using such labeled data
to train a supervised classifier because we only employ the
labels for measuring performance instead of using them during
training.

The project’s main objective is to improve differentiation
between fake and genuine news using supervised classifiers
SVM and RF and unsupervised classifiers K-means and MoG.
Clustering refers to grouping similar data points together,
based on their features, such that each cluster holds the most
similar points. For example, we want to see how we can
cluster the real and fake news using the sentiment features
and vectorized text with and without dimensionality teduction
techniques on the news articles.

II. LITERATURE REVIEW

For the classification of real and fake news, there exist two
categories of significant research: the first category is related
to approaches at a conceptual level, including fake news
distinction concerning serious lies (the news is pertaining to
unreal events or information), tricks (such as, deliberately
providing wrong information), and comics (for example, funny
news that imitates real news with strange contents) [4], while
the second category is related to approaches at a linguistic
level utilizing practical techniques to compare the contents of
real and fake news [3].

The linguistic approach uses specific linguistic behaviors
such as markings, vocabulary, or labeling that are consid-
ered unintentional and beyond the scope of an author’s at-
tention. Through appropriate evaluation with linguistic tech-
niques, promising results are revealed in the detection of fake
news.

Majbouri et al. [6] propose a method of dimensionality reduc-
tion to extract only essential features of high dimensionality
datasets containing real and fake news articles. The steps
in their proposed method are computing similarity between
primary features in the fake news dataset, clustering fea-
tures by similarity, and detecting fake news using an SVM
classifier. The proposed method was evaluated by comparing
performance with Decision Tree and Naive Bayes methods

and found that classification accuracy improved because of
redundant feature elimination and dimension reduction.

III. DATA

In this project, to classify news as real or fake, we use the ISOT
Fake News Dataset [7](8] gathered from the Kaggle website.
The data consists of two CSV files, “True.csv’” and “Fake.csv.”
Each article includes the following information: article, text,
type, and the date of publication (see Table I). The data was
cleaned and processed as explained in the following methods
section of this paper.

TABLE | DATA

Data Size Features |

MNews Type Number of Articles
Real News 21,417 World 10,143
Palitics 11272

News Type Number of Artides
Government 1,570
Middle East 778

7
Fake News 23481 . .
Left 4,459
Palitics 6,841
Mews 9,050
IV. METHODS

First, we clean our data in preparation for the supervised
and unsupervised algorithms. Then, once cleaned, we intro-
duce sentiment analysis, and term frequency-inverse document
frequency (TF-IDF) a form of feature generation to enhance
classification performance on the classifiers.

A. Data Cleaning

Before pre-processing our data for analysis by performing
TF-IDF and sentiment analysis with the Natural Language
Toolkit (NLTK) [9] to ensure it was ready for analysis under
the supervised and unsupervised methods, we employed data
cleaning techniques. For simplicity, we elected to analyze
only the titles of the news articles contained in our datasets.
Therefore, before we could perform sentiment analysis on
the data, it was necessary to clean the text by reversing
contractions, and unfiltering profanity using dictionary map-
pings, removing username handles (e.g., @name), separating
words contained in hashtags by removing pound symbols (e.g.,
#HashTag becomes Hash Tag), as well as removing English
stop words, punctuation, and website links.

B. Sentiment Analysis

Once we had cleaned the data, we implemented sentiment
analysis and TF-IDF on the titles. Sentiment analysis is a
text analysis tool that detects the polarity (e.g., a positive
or negative sentiment) within the text. To detect polarity in
the titles of our data, we utilized NLTK's VADER lexicon, a
sentiment analysis model that is sensitive to both polarity and
sensitivity of emotion [9]. The sentiment score is obtained
by taking the sum of the intensity of each word in the text.
Sentiment analysis provided us with additional features to use
for classification performance.

TF-IDF is a numerical statistic reflecting the importance of
a word for a document in a corpus [10). We apply TF-IDF
to the titles based on a constrained vocabulary of the top
2000 most frequent words, which is reduced from the original
vocabulary size of 20,874. These TF-IDF features become
the data we wish to train on, and the O/1 label for fake
and real news becomes the labels that enable performance
measurement.

TF-IDF provided 2000 new features for the models to train
on; however, this is an exuberant amount of features. Prin-
cipal component analysis (PCA) is a well-known technique
for applications such as dimensionality reduction [11]. We,
therefore, implemented PCA on the TF-IDF features for some
of the model training.

C. Unsupervised Learning Methods

The goal of K-means clustering is to partition the dataset into
K number of clusters after several iterations. Performance is
dependent on convergence to optimal local points (centers). K-
means begins with randomly selected locations as initial clus-
ter centers. During each iteration, cluster centers are updated
based on the data points nearest to them and continue until
improvement halts. We implement K-means manually follow-
ing Bishop implementation [11] as in the second homework
assignment and with Scikit-Learn [12] implementation.

For K-means, we introduce a 1-of-K coding scheme where
we have a corresponding set of binary indicator variables
raee{0, 1} where k = 1,..., K describing which of the K
clusters a data point x,, is assigned to cluster k then v, = 1
and rpj = 0 for j # k. We define an objective function

as,
N K
J = erﬂkll:‘:ﬂ == F'fkll2
n=1k=1

which represents the sum of squares of the distances of each
data point to its assigned vector py. [11].

Expectation step: For each data point x,, we assign to the
closest cluster; in this step, we minimize J with respect to
i keeping the yuy. fixed. We assign the n'* data point to the
nearest cluster center [11].

Tk = {

Maximization step: Each cluster is recomputed to be the
mean of the points assigned to the corresponding cluster. We
minimize J with respect to k, keeping r,. fixed [11]. Setting
its derivative to zero yields

1,if k = argming||z. — uj)]
0, otherwise

N
2 z Pui(2n — pr) = 0.

=1
Solving for pz we have

g TnkLn

Zn Tnk I

e =

The convergence criteria are met when the algorithm no
longer changes. However, finding the optimum is not guar-
anteed.

Mixtures of Gaussian (MoG) are motivated as a simple linear
superposition of Gaussian components to provide a richer
density model than the single Gaussian [11]. MoG was imple-
mented using the Scikit-Learn library [12] in Python.

D. Supervised Learning Methods

We train a Support Vector Machine (SVM) and Random Forest
(RF) for the supervised comparison element. The goal of SVM
is to construct a hyperplane to use for classification. A good
separation is achieved by the hyperplane that has the largest
distance to the nearest training-data point of any class since
the larger the margin, the lower the generalization error of
the classifier [13]. Random Forests operate by constructing
multiple decision trees at training time and outputting the class
that is the mode of the classes for classification [14].

The SVM and RF models are implemented using the Scikit-
Learn library [12] in Python, with no modifications made to
the default arguments. We train/test split our data with an
80/20 split and a random state equal to 42. This configuration
gives 35,911 training and 8,978 testing samples.

E. Reddit Bot

Classifying news headlines on the r/news and r/worldnews
subreddits then commenting on the likelihood that a news
headline is fake is accomplished by utilizing Reddit’'s API
known as PRAW [15]. A class object with access to a Reddit
accounts keys, username, and password are required to access
writing comments to posts. Once a PRAW class is initialized,
a stream of new submissions can be attained. The title of
these submissions is the headline of the article due to the
nature of the subreddits. The features of this title are extracted
through python’s Scikit-Learn function TfidfVectorizer [12]
with 2000 max features. This vector is then classified using an
MoG model with two components. The model is trained on
the previously described dataset and then utilized to predict
the probability and class of the headline. Each submission
from the stream can then be replied to in the following
format:

BEEP BOOP

We have identified this article to be:
(fake news/real news)

Fake news probability: ##

Real news probability: ##

Original headline title classification:
(Original title inputted to the program)

V. EXPERIMENTAL RESULTS

For Scikit-Learn implementations, we classify each algorithm
with multiple feature selections, including TF-IDF with and
without PCA and sentiment features (see Table IT). We found
that the supervised classifiers, SVM and RF, performed better

without PCA and achieved similar results with and with-
out sentiment features reaching maximal accuracy scores of
95.17% and 94.179%, respectively. We determined K-means
performance with label information to match clusters to label
identity based on majority membership. We found the unsuper-
vised classifiers, K-means and MoG, performed better without
PCA with only TF-IDF features and performed better with
PCA when sentiment features were included with TF-IDF but
performed better overall with TF-IDF features at 86.6% and
84.36%, respectively.

TABLE II. MODEL PERFORMANCE

Feature Selection
TF-IDF TF-IDF + Sentiments
Madal ‘With PCA Without PCA With PCA Without PCA

SWM 92.35%)| 95.17% 92.43% 95.12%

RF 93.33%| 94.13% 93.3!1%: 94.17%
K-Means | 86.20%| B6.60% 64,9085 64.70%
MoG 72.89%] B4.36% 69.16%, 65.68%

A, K-Means

To determine which combinations of features would pro-
duce the best K-means accuracy, we calculated accuracies
for unigue combinations for each feature across the 2D and
3D space. We found that the features that achieve the best
accuracy (69.85%) are compound, positive, negative, neutral,
and number of words. When applying K-Means to features
derived from sentiment analysis, a lack of separability resulted
in weak clusters and accuracies within the range of 60%
- 70% (Figure 1 and Figure II). When applied to a six-
dimensional space (ie. features=Negative Sentiment Score,
Positive Sentiment Score, Neutral Sentiment Score, Compound
Sentiment Score, Number of Words, Number of Characters),
under the Scikit-Learn implementation (random seed=0), K-
means achieved a maximum accuracy score of 64.9%. When
the dataset was shortened to only include the features Negative
Sentiment Score, Compound Sentiment Score, Number of
Words, the maximum accuracy score increased to 74.9%
(random seed=12) (Figure III).

FIGURE I FIURE NI

- 10 Bion B0 Bt Feshrms e Lo 30 Tl 0 2 i

FIGURE NI

P Lokus 3 tasad Srtwet b

To explore our models against high-dimensional data to in-
crease our accuracy, we calculated TF-IDF for our dataset,
resulting in 2000 features for exploration. However, despite the
inclusion of TF-IDF, a lack of separability in our data was still
prevalent. This lack of separability produced weak clusters,
with an average accuracy of around 60%-70%—similar to the
results without TF-IDF. However, after trying several different
random seeds to reproduce results achieved with our Bishop-
model K-means, we found that Scikit-Learn implementation
of K-Means could classify the 2000-dimensional dataset with
86.6% accuracy when the random seed was set to 40. To
reduce the dimensionality, PCA was applied to our TF-IDF
dataset to view more condensed plots (Figure IV and V).
Despite the application of PCA, we can see that the sepa-
rability did not improve, and the accuracy was affected by
an insignificant amount. We applied PCA across a range of N
values from 1 to 2000, iterating for each value of 100 features.
Given this, we determined that the best accuracy would be
equal to 86.3%, yielded by N = 300.

Figure IV

R Dt [P okl T2 Dt

In more attempts to increase accuracy, we decided to apply
PCA against both the sentiment dataset and the TF-IDF dataset
(Figure VI, VII, VIII, and IX).

Figure W1,

Figure Vi,

VI. DISCUSSION

A significant challenge for fake news classification with K-
means is cluster separability. When applied to only sentiment
analysis features, K-means resulted in weak cluster separabil-
ity and weak fake news detection. When using K-means on all
2000 TF-IDF features, K-means achieved maximal accuracy;
however, it is challenging to visualize clusters in a 2000
dimensional space.

Initially, the intention was to classify Facebook posts since
it has a much larger user base and a more prominent Fake
News issue, but Facebook doesn’t permit access to its APL
When selecting which submissions to classify on Reddit, the
API gave access to recently popular, most popular of the past
day/week/month/all time, and new submissions. Due to the
sheer volume of comments, new comments on popular posts
would not get noticed. The best approach is to classify an
article before it rises to prominence to allow users who upvote
it access to the data provided by the bot. In the future, the
bot may be deployed to comments within more subreddits’
comment sections which would require data scraping every
link posted in a submission’s comments, classifying the link as
a news article, then extracting the headline of the article. User
feedback by responding to the bots classifications with “good
bot” or “bad bot” to indicate if the classification is correct or
not could be utilized to improve the model as well. Adding
misclassified data to the original training dataset would likely
enhance the model but may be abused by users.

VII. CONTRIBUTIONS
A I

« Reddit Bot
« Paper (ReddivReddit Bot in sections L, IV, and VL)

Ly

o K-Means Manual Implementation
« K-Means Scikit-Learn

« PCA Scikit-Learn

« Paper (K-means in section V.)

« Video Editing

c. I

« Data Pre-Processing
« Sentiment Analysis

« Paper (all sections)

« Latex

« Presentation Slides

». I

« Paper (all sections)

« Background/Research
« Latex

« Presentation Slides

c. I
o K-Means Manual Implementation
« K-Means Scikit-Learn Implementation

« PCA Scikit-Learn
« Paper (K-means in section V.)

F. Michael Baluja

« Paper (Motivation in section L)

« Paper (Supervised Methods in section IV.)
« PCA Manual Implementation

« Supervised Implementation

VIII. CODE

The following link is to the GitHub repository containing all

of the code utilized in this project.
Link to GitHub:
htips://github.com/michaelbaluja/118bfinalproject

REFERENCES

[1] C. Zhang, A. Gupta, C. Kauten, A. Deokar, and X. Qin, “Detecting
fuke news for reducing misinformation risks using analytics approaches,”

European Journal of Operational Research, vol. 279, 06 2019,

[2] G. Gravanis, A. Vakali, K. Diamantaras, and P. Karadais, “Behind the
cues: A benchmarking study for fake news detection,” Expert Systems

with Applications, vol. 128, 03 2019,
3

2019. [Online]. Available: hups:/fapp.di

A. Bondielli and F. Marcelloni, “A survey on fake news and rumour
detection techniques” Information Sciences, vol. 497, pp. 38-55,

pub. 1114201506

ilsfpublication/

(4]

[51

(6]

7

(8]

191

[10]

[t]

(121

[13]

[14]

[15]

Y. Chen, N. Conroy, and V. Rubin, “News in an online world: The need
for an " automatic crap detector)" vol. 6710, 10 2015,

N. K. Conroy, V. L. Rubin, and Y. Chen, “Automatic deception
detection: Methods for finding fake news” Proceedings of the
Association for Information Science and Technology, vol. 52, no. 1, pp.
14, 2015, [Online]. Available: https:Vasistdl.onlinelibrary. wiley.com/
doifabs/10.1002/pra 201 5.1450520 10082

K. M. Yazdi, A M. Yaedi, 8. Khodayi, J. Hou, W. Zhou, and
5. Saedy, “Improving fake news detection using k s and support
vector machine approaches.” International Journal of Electronics and
Communication Engineering, vol. 14, no. 2, pp. 38 — 42, 2020.
[Online]. Available: hitps:{fpublications waset.org/vol/ 158

H. Ahmed, I. Traore, and 8. Saad, “Detecting opinion spams and fake
news using text classification,” Security and Privacy, vol. 1, p. e9, 12
2017.

H. Ahmed, I. Traoré, and 5. Saad, “Detection of online fake news using
n-gram analysis and machine leaming techniques,” in ISDDC, 2017,

5. Bird, E Klein, and E. Loper, Natural language processing with
Python: analyzing text with the natural lamguage toolkit. " O'Reilly
Media, Inc.”, .

A. Rajaraman and J. D. Ullman, Data Mining. Cambridge University
Press, 2011, p. 1-17.

C. M. Bishop, Pattern Recognition and Machine Learning {Information
Science and Statistics). Berlin, Heidelberg: Springer-Verlag, 2006.

E. Pedregosa, G. Varoguaux, A. Gramfort, V. Michel, B. Thirion,
. Grisel, M. Blondel, P. Prettenholer, B. Weiss, V. Dubourg, J. Vander-
plas. A. Passos, D. Cournapean, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python," Journal of Machine
Learning Research, vol. 12, pp. 2825-2830, 2011.

T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical
learning: data mining, inference and prediction, 2nd ed. Springer, 2009,
[Online]. Available: http:/fwww-stat stanford edu/~tibs/ElemStat Learn/

T. K. Ho, “The random subspace method for constructing decision
forests,” TEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 20, no. B, pp. 832-844, 1998,

B. Boe, PRAW: The Python Reddit API Wrapper. Bryce Boe Revision,
2021. [Online]. Available: hips://github.com/praw- devipraw!

